

Setting the Standard for Automation™

SCADA An Integrative Approach

Sixth Annual Water, Wastewater and Automation Controls Symposium © 2011 ISA

Standards Certification Education & Training Publishing Conferences & Exhibits

Presenter

- Cameron Kamrani, ре, мва Kamrani Engineering Inc.
 Chapel Hill, NC, 27517
- Master of Engineering, University of Louisville
- Mater of Business Administration, Bellarmine University
- 33 Years experience in Engineering and Automation
 - Planning, design, construction, integration, commissioning and validation
- Projects
 - Water plants and distribution, Wastewater plants and remote stations
 - Pharmaceuticals, Food, Bulk chemical, Laboratories, Educational facilities
 - Data centers, Power distribution and metering, Building control systems
- Employer Portfolio
 - Burgess and Niple, Earth Tech./Tyco, MSD- Louisville

Presentation Goals

- Traditional Versus Integrative Design Approach
- Features of Integrative Approach
- Trends of SCADA toward Integrative Approach
- Delivering a successful SCADA Project-KPIs
 - Project team
 - Project management
 - Communication
 - Measurement and verification
- Standards

Traditional Approach

- ISA
- Design- Bid- Construction Approach
 - All team members of one firm, but seem to work in silos
 - Lack of open communication among team
 - Unclear/Unspecific project requirements and goals
 - Poor project progress documentation
 - No change control procedure
 - Award construction to the lowest bidder
 - Keep contractor responsible for total project
 - Lack of follow up after construction
 - Required Training
 - System performance
 - Verification of benefits

Integrative Approach

- Integrative Design Approach
 - Open communication and connections among design professionals
 - Synergy among the Team
 - Clear Project Definition and Management of Change
 - Goals (availability, integrity, confidentiality....), cost, benefits,...
 - Performance measurement and verification
 - Process of using measurement to determine savings of a Energy Management Program
 - Reductions in cost of ownership
 - Standards
 - Life cycle assessment
 - Life cycle cost
 - Reduce risk
 - Eliminates inefficiencies through audits
 - Sustainability goals of 21st Century
 - Energy use, environment, public infrastructure

- Project manager
 - Project requirements (Owner project requirements- OPR)
 - Technical
 - Financial
 - Time
- Use SMART plan
 - S for Specific
 - What is to be achieved
 - By whom
 - Where
 - And when it is to be achieved
 - M for Measurable of financial and progress parameters
 - Monitor through out the project meetings
 - Milestones reviews versus the baseline
 - Make sure that the project is on the right track towards the OPR

- Use SMART plan
 - S for Specific
 - M for Measurable
 - A for Attainability
 - Ensure that the requirements are attainable (Technical, Financial, Time)
 - Ensure that the team believes that it is attainable
 - Look at the man in the mirror (strength and weakness)
 - R for Relevant
 - Make sure that the team efforts are relevant to the OPR
 - Keep the focus on short term OPR requirements and then
 - The long term requirements

- Use SMART plan
 - S for Specific
 - M for Measurable
 - A for Attainability
 - R for Relevant
 - T for Time Based
 - Time frame the requirements
 - Time frame critical technical milestones
 - Time framing project achievements is a good motivator
 - Time framing prevents procrastination by the team

- Use SMART plan
 - S for Specific
 - M for Measurable
 - A for Attainability
 - R for Relevant
 - T for Time Based
- SMART plan
 - Creates awareness for the Team
 - Allows for timely execution
 - Focuses on order
 - Motivates the Team
 - Prevents costly mistakes , rework and disappointments

ISA

Integrative Approach Project Management- Critical

- Selection of the Project Manager and the Team
- Preparation of OPR with stakeholders
- Preparation a SMART plan
- Refining of the Team
 - Roles and responsibilities
- Follow the SMART plan
- Start Project Life Cycle
 - What needs to be done
 - Assign to the best qualified entity
 - One firm
 - Multiple firms
- Measurement and verification plan

Integrative Approach Project Life Cycle

MT10- ISA

Integrative Approach Life Cycle Assessment-1

- Life Cycle Assessment of SCADA
 - Features
 - SCADA functions and application
 - Metering for energy conservation
 - Powerful 3rd party analytical database
 - Components
 - Multiple RTUs, MTUs, Workstations
 - High Volume Storage
 - Hardened IT system
 - Meters and sensors
 - Networks
 - Islands of SCADA
 - Wired/Wireless
 - Mobile device connectivity
 - Educate the owner and stakeholders

Integrative Approach Life Cycle Assessment-2

- Educate the owner and stakeholders
 - Involved
 - Security measures
 - Physical servers
 - Outlets
 - Cyber security
 - Sustainability of Compliance
 - Understand
 - Architecture (Basic.....Advanced)
 - Operational features and forecasted benefits
 - Analysis to improve efficiencies
 - Energy Conservation Measures
 - Reduce MTTR, Increase MTBF
 - Support
 - Continuous training
 - Continuous improvement

Integrative Approach Life Cycle Cost

ISA

MT10- ISA

Integrative Approach Reduce cost of ownership

- Economic profile
 - Life cycle benefits (Cost avoidance/cost savings)
 - Efficiency
 - Energy
 - manpower
 - Regulatory
 - Life cycle cost
 - Equipment price
 - Engineering design cost
 - Hardware
 - Software
 - Installation
 - Annual costs
 - Engineering upgrades
 - Operation
 - Maintenance

ISA

Integrative Approach Reduce cost of ownership-Benefits

- Efficiency
 - Select equipment/Take Inventory
 - Establish Eff. baselines
 - 3rd party software-Modeling
 - Specialty program modules- Fine-tune
 - Track/Analysis of control strategy Eff. through Historians and
 - LOOK AT IT
- Energy
 - Select equipment or process
 - 3rd party software- Modeling
 - Specialty program modules- ECM and metering
 - Establish units of measurements
 - KW / GPM, KW/ CFM, KW/ft2, Energy cost effectiveness
 - Track/Analysis/Compare through Historians and
 - LOOK AT IT

Integrative Approach Reduce cost of ownership-Benefits

- Maintenance
 - Create environment and attitude
 - Needed tools
 - Adequate training
 - Needed infrastructure
 - Connectivity- Wired/wireless
 - Field data (automatic or manual entry)
 - Connectivity to centralized systems
 - Calibration
 - Work order
 - Reduce MTTR
 - Increase MTBF
- Regulatory
 - Reasonable documentations through historians
 - Off-line storage

Integrative Approach Reduce cost of ownership- Engineering

- Standards
 - Drawings
 - P&IDs, Symbols, Panels. Loops,
 - Communication protocols and media
 - Hardware components
 - IO and wire tagging scheme
 - Programming language
 - Software modules and Strategy Descriptions
 - Alarm management
 - HMI graphics
 - Security
 - Physical
 - Cyber Space
 - Sustainability of Compliance

ISA

Integrative Approach

Reduce cost of ownership- Implementation

Contractors

- Pre-qualify
- Site walk through and pre- bid meeting(s)
- Detail drawing and specification and scope
 - Hardware and installation
 - Installation details
 - Project implementation schedule
- Construction administration and commissioning
 - Weekly inspection
 - Issues log
- Vendors
 - Pre-qualify
 - Negotiate price and long term support
- Integrators
 - Select the design engineers

Integrative Approach Project Team

- Owner and Stakeholders
 - Management
 - Operators
 - Technicians- SCADA and IT
- Engineers/ Integrators
 - SCADA hardware and software programmers
 - PLC/RTU
 - HMI
 - Instrument
 - IT programmers for network and security
- Pre-qualified Vendors and Contractors
- General Public- Keep informed
- Government- Monitor regulations and trends

Integrative Approach Trends in SCADA- Getting complicated?

Web InTech- April 2010

ISA

Integrative Approach Trends in SCADA-1

- Reduce operational cost
- Efficient operation of process
- SCADA system is a specialized IT system
- Secure and hardened infrastructure
 - Physical security of servers and outlets
 - Managed switches
 - Firewalls
 - Sustainability of compliance
 - Monitor/response
 - Antivirus
 - Access control

Integrative Approach Trends in SCADA-2

- OPC-UA (Unified Architecture)
- Connectivity to Smart Grid
- Secure wireless networks with encryption
- 3G enabled RTUs with security
- Speed and integrity for data
 - Fiber Optics
 - Fault Tolerance
 - Disaster recovery system

Integrative Approach Trends in SCADA-3

- Lots of Data
 - Critical Infrastructures CCTV /Video
 - Automatic Meters -AMI
 - On site and remote storage
 - Hot swappable backup
 - Analytical 3rd party software tools
 - Analysis of data
 - Energy, PM, Downtime, Efficiency, Security, Custom reports

Control Microsystems 2010

Integrative Approach SCADA- Energy Conservation

- Recognize Energy as a Business Process
- Train Staff (Operators, Techs. Engineers, Management)
- Identify energy and operational parameters and metering
 - Plant, System, Process
 - Reduce Demand, Reduce Rates, Optimize Load Scheduling
 - Increase Motor Efficiency, Increase Pumping Efficiency, Reduce Losses
- Develop Baseline Energy models
- Plan for Measurement and Verification
- Post installation metering and modeling
- Track parameters
- Portal(s) to display Energy Usage & Savings & KPIs
- Address Deficiencies & Make Continuous Improvements

Integrative Approach Delivering a successful SCADA Project

- Key Performance Indices
 - Project management
 - Competent project manager
 - SMART plan
 - Project life cycle
 - Communication
 - Team awareness of scope
 - Clarified roles and responsibilities
 - Documentation of meetings minutes and decision milestones
 - Continuous updates to OPR and BOD
 - Project implementation
 - Proof of concept- Reduce risk
 - Detail implementation schedule for contractor- Reduce risk
 - Prevent piecemeal efforts- Improve quality
 - Keep engineers as integrators

Integrative Approach Delivering a successful SCADA Project

- Key Performance Indices
 - Measurement and Verification (M & V)
 - Keep engineers/integrators on board cradle to grave
 - Start staff training early
 - M & V Plan- ECM and other measurable benefits
 - OPR and BOD
 - Quantification of benefits (Baselines and new)
 - Efficiency improvements
 - Energy savings
 - Manpower reduction
 - Additional capacity
 - Phased verification plan
 - During program development- Integration
 - During construction- CA and commissioning
 - End of construction- Commissioning
 - Post construction- M & V

Integrative Approach Standards

- ISA Standards
 - ISA 5.1, 5.06, 5.4, 5.5 (Symbols, P&IDs, Loops and functional description)
 - ISA 18 (Management of Alarm Systems for the Process Industries)
 - ISA-20 (Instrument specification forms)
 - ISA-95 (Enterprise-Control System Integration)
 - ISA-99- (Industrial Automation and Control Systems Security)
 - ISA-100- (Wireless Systems for Automation)
- International Performance Measurement and Verification
 Protocol
 - IPMVP- Options A-D
- ASHRAE Guidelines

"You can not manage what you do not measure."

Jack Welch, GE

